
HDL Coder™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ Release Notes
© COPYRIGHT 2012–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

R2014b

Clock-rate pipelining to optimize timing in multi-cycle
paths . 1-2

Support for Xilinx Vivado . 1-2

IP core generation for Altera SoC platform 1-2

Custom or legacy HDL code integration in the MATLAB to
HDL workflow . 1-3

Custom HDL code for IP core generation from MATLAB . . . 1-3

Model reference as DUT for code generation 1-3

Code generation for HDL optimized FFT/IFFT System object
and HDL optimized Complex to Magnitude-Angle System
object and block . 1-3

Added features to HDL optimized FFT/IFFT blocks, including
reduced latency . 1-4

Tunable parameter support for Gain and Constant blocks . 1-4

Code generation for Stateflow active state output 1-4

Coding standards customization . 1-4

HDL Designer script generation . 1-5

Clock enable minimization for code generated from MATLAB
designs . 1-5

iv Contents

HDL Block Properties dialog box shows only valid
architectures . 1-5

HDL Reciprocal block with Newton-Raphson
Implementation . 1-5

Serializer1D and Deserializer1D blocks 1-6

Additional blocks supported for code generation 1-6

Traceable names for RAM blocks and port signals 1-6

for-generate statements in generated VHDL code 1-7

Composite user-defined System object support 1-7

System object output and update method support 1-7

RAM mapping for user-defined System object private
properties . 1-7

hdlram renamed to hdl.RAM . 1-7

Target platform interface mapping information saved with
model . 1-8

Highlighting for feedback loops that inhibit optimizations . 1-8

Optimizations available for conditional-execution
subsystems . 1-8

Variable pipelining in conditional MATLAB code 1-9

2-D matrix types in HDL generated for MATLAB matrices . . 1-9

Optimizations available with UseMatrixTypesInHDL for
MATLAB Function block . 1-9

Validation model generation regardless of delay balancing
results . 1-9

v

Documentation installation with hardware support
package . 1-10

Functionality Being Removed or Changed 1-10

R2014a

Code generation for enumeration data types 2-2

ZC706 target for IP core generation and integration into
Xilinx EDK project . 2-2

Automatic iterative clock frequency optimization 2-2

Code generation for FFT HDL Optimized and IFFT HDL
Optimized blocks . 2-2

HDL block library in Simulink . 2-2

Bus support improvements . 2-3

Variant Subsystem support for configurable models 2-4

Trigger signal can clock triggered subsystems 2-4

2-D matrix types in code generated for MATLAB Function
block . 2-4

64-bit data support . 2-4

HDL code generation from MATLAB System block 2-4

System object methods in conditional code 2-5

Persistent keyword not needed in HDL code generation . . 2-5

Dual Rate Dual Port RAM block . 2-5

vi Contents

Negative edge clocking . 2-6

Bidirectional port specification . 2-6

Port names in generated code match signal names 2-6

Additional blocks and block implementations supported for
code generation . 2-6

Errors instead of warnings for blocks not supported for code
generation . 2-7

ModelReference default architecture for Model block 2-8

Reset port optimization . 2-8

Reset for timing controller . 2-9

Synthesis attributes for multipliers . 2-9

Ascent Lint script generation . 2-9

RAM mapping scheduler improvements 2-9

Incremental code generation and synthesis 2-10

Custom HDL code for IP core generation 2-10

Performance-prioritized retiming . 2-10

Retiming without moving user-created design delays 2-11

Resource sharing factor can be greater than number of
shareable resources . 2-11

Reduced area with multirate delay balancing 2-11

Serializer-deserializer and multiplexer-demultiplexer
optimization . 2-12

Synthesis and simulation tool addition and detection after
opening HDL Workflow Advisor . 2-12

vii

Automatic C compiler setup . 2-12

xPC Target is Simulink Real-Time . 2-12

Updates to supported software . 2-12

Functionality Being Removed or Changed 2-13

R2013b

Model reference support and incremental code generation . 3-2

Code generation for user-defined System objects 3-2

RAM inference in conditional MATLAB code 3-2

Code generation for subsystems containing Altera DSP
Builder blocks . 3-3

IP core integration into Xilinx EDK project for ZC702 and
ZedBoard . 3-3

FPGA Turnkey and IP Core generation in MATLAB to HDL
workflow . 3-3

Module or entity generation for local functions in MATLAB
Function block . 3-4

Bus signal inputs and outputs for MATLAB Function block
and Stateflow charts . 3-4

Coding style for improved ROM mapping 3-4

Reset port optimization . 3-4

Pipeline registers between adder or multiplier and rounding
or saturation logic . 3-4

viii Contents

Coding style improvements according to industry standard
guidelines . 3-4

Coding standard report target language enhancement and
text file format . 3-5

Load constants from MAT-files . 3-5

UI for SpyGlass, Leda, and custom lint tool script
generation . 3-5

Synthesis tool addition and detection after MATLAB-to-HDL
project creation . 3-6

Synthesis script generation for Microsemi Libero and other
synthesis tools . 3-6

File I/O to read test bench data in VHDL and Verilog 3-6

Floating-point library mapping for mixed floating-point and
fixed-point designs . 3-6

xPC Target FPGA I/O workflow separate from FPGA Turnkey
workflow . 3-7

AXM-A75 AD/DA module for Speedgoat IO331 FPGA board . 3-7

Speedgoat IO321 and IO321-5 target hardware support 3-7

Distributed pipelining improvements with loop unrolling in
MATLAB Function block . 3-7

HDL Counter has specifiable start value 3-7

Maximum 32-bit address for RAM . 3-8

Removing HDL Support for NCO Block 3-8

Fixed-point file name change . 3-8

Support package for Xilinx Zynq-7000 platform 3-8

ix

Support package for Altera FPGA boards 3-9

Support package for Xilinx FPGA boards 3-10

Floating point for FIL and HDL cosimulation test bench
generation . 3-10

Additional FPGA board support for FIL verification,
including Xilinx KC705 and Altera DSP Development Kit,
Stratix V edition . 3-10

R2013a

Static range analysis for floating-point to fixed-point
conversion . 4-2

User-specified pipeline insertion for MATLAB variables . . . 4-2

Resource sharing and streaming without over clocking . . . 4-2

Generation of custom IP core with AXI4 interface 4-3

Coprocessor synchronization in FPGA Turnkey and IP Core
Generation workflows . 4-3

Code generation for System objects in a MATLAB Function
block . 4-3

Resource sharing for the MATLAB Function block 4-3

Finer control for delay balancing . 4-3

Complex multiplication optimizations in the Product
block . 4-4

Speedgoat IO331 Spartan-6 FPGA board for FPGA Turnkey
workflow . 4-4

x Contents

Cosimulation and FPGA-in-the-Loop for MATLAB HDL code
generation . 4-4

HDL coding standard report and lint tool script
generation . 4-4

Output folder structure includes model name 4-5

File I/O to read test bench data in Verilog 4-5

Prefix for module or entity name . 4-5

Single rate Newton-Raphson architecture for Sqrt,
Reciprocal Sqrt . 4-6

Additional System objects supported for code generation . . 4-6

Additional blocks supported for code generation 4-6

Functionality being removed . 4-7

R2012b

Input parameter constants and structures in floating-point to
fixed-point conversion . 5-2

RAM, biquad filter, and demodulator System objects 5-2
HDL RAM System object . 5-2
HDL System object support for biquad filters 5-2
HDL support with demodulator System objects 5-2

Generation of MATLAB Function block in the MATLAB to
HDL workflow . 5-2

HDL code generation for Reed Solomon encoder and decoder,
CRC detector, and multichannel Discrete FIR filter 5-3

HDL code generation . 5-3
Multichannel Discrete FIR filters . 5-3

xi

Targeting of custom FPGA boards . 5-3

Optimizations for MATLAB Function blocks and black
boxes . 5-3

Generate Xilinx System Generator Black Box block from
MATLAB . 5-4

Save and restore HDL-related model parameters 5-4

Command-line interface for MATLAB-to-HDL code
generation . 5-4

User-specifiable clock enable toggle rate in test bench 5-4

RAM mapping for dsp.Delay System object 5-4

Code generation for Repeat block with multiple clocks 5-5

Automatic verification with cosimulation using HDL
Coder . 5-5

ML605 Board Added To Turnkey Workflow 5-5

R2012a

Product Name Change and Extended Capability 6-2

Code Generation from MATLAB . 6-2

Code Generation from Any Level of Subsystem Hierarchy . . 6-3

Automated Subsystem Hierarchy Flattening 6-3

Support for Discrete Transfer Fcn Block 6-3

User Option to Constrain Registers on Output Ports 6-3

xii Contents

Distributed Pipelining for Sum of Elements, Product of
Elements, and MinMax Blocks . 6-4

MATLAB Function Block Enhancements 6-4
Multiple Accesses to RAMs Mapped from Persistent

Variables . 6-4
Streaming for MATLAB Loops and Vector Operations 6-4
Loop Unrolling for MATLAB Loops and Vector Operations . . 6-4

Automated Code Generation from Xilinx System Generator
for DSP Blocks . 6-4

Altera Quartus II 11.0 Support in HDL Workflow Advisor . . 6-5

Automated Mapping to Xilinx and Altera Floating Point
Libraries . 6-5

Vector Data Type for PCI Interface Data Transfers Between
xPC Target and FPGA . 6-5

New Global Property to Select RAM Architecture 6-5

Turnkey Workflow for Altera Boards 6-6

HDL Support For Bus Creator and Bus Selector Blocks . . . 6-6

HDL Support For HDL CRC Generator Block 6-6

HDL Support for Programmable Filter Coefficients 6-6
Notes . 6-7

Synchronous Multiclock Code Generation for CIC
Decimators and Interpolators . 6-7

Filter Block Resource Report Participation 6-8

HDL Block Properties Interface Allows Choice of Filter
Architecture . 6-9

HDL Support for FIR Filters With Serial Architectures and
Complex Inputs . 6-11

xiii

HDL Support for External Reset Added for Proportional-
Integral-Derivative (PID) and Discrete Time Integrator
(DTI) Blocks . 6-11

xiv

R2014b
Version: 3.5

New Features

Bug Fixes

Compatibility Considerations

R2014b

1-2

Clock-rate pipelining to optimize timing in multi-cycle paths

In the Simulink® to HDL workflow, for speed optimizations that insert pipeline registers,
the coder identifies multi-cycle paths in your design and inserts pipeline registers at
the clock rate instead of the data rate. When the optimization is in a slow-rate region
or multi-cycle path of the design, clock rate pipelining enables the software to perform
optimizations without adding extra latency, or by adding minimal latency. It also enables
optimizations such as pipelining and floating-point library mapping inside feedback
loops.

Clock-rate pipelining is enabled by default. You can disable clock-rate pipelining in one of
the following ways:

• In the HDL Workflow Advisor, in the HDL Code Generation > Set Code
Generation Options > Set Advanced Options > Optimization tab, select Clock-
rate pipelining.

• At the command line, use makehdl or hdlset_param to set the
ClockRatePipelining parameter to off.

For details, see “Clock-Rate Pipelining”.

Support for Xilinx Vivado

The HDL Coder™ software is now tested with Xilinx® Vivado® Design Suite 2013.4. You
can:

• Generate a custom IP core for the Zynq®-7000 platform and automatically integrate it
into a Vivado project for use with IP Integrator.

• Program FPGA hardware supported by Vivado using the HDL Workflow Advisor.
• Perform back-annotation analysis of your design.
• Generate synthesis scripts.

IP core generation for Altera SoC platform

You can generate a custom IP core with an AXI4 interface for the Altera® SoC platform.

HDL Coder can also insert your custom IP core into a predefined Qsys project to target
the Altera Cyclone V SoC development kit or Arrow SoCKit development board. The

1-3

coder can connect the IP core to the ARM processor via the AXI interface within the
project.

The software provides add-on support for Altera SoC hardware via the HDL Coder
Support Package for Altera SoC Platform. For more details, see “HDL Coder Support
Package for Altera SoC Platform”.

Custom or legacy HDL code integration in the MATLAB to HDL workflow

You can use a black box System object™, hdl.BlackBox, to integrate custom HDL code
into your design in the MATLAB® to HDL workflow. For example, you can integrate
handwritten or legacy HDL code that you previously generated from MATLAB code or a
Simulink model.

For an example that shows how to use hdl.BlackBox, see “Integrate Custom HDL Code
Into MATLAB Design”.

Custom HDL code for IP core generation from MATLAB

You can integrate custom HDL code, such as handwritten or legacy HDL code, into
your design in the MATLAB to HDL IP core generation workflow. Use one or more
hdl.BlackBox System objects in your MATLAB design, and add the HDL source files in
the Additional source files field.

To learn how to use the Additional source files field, “Generate a Board-Independent
IP Core from MATLAB”.

Model reference as DUT for code generation

You can directly generate code for a model reference, without placing it in a Subsystem
block. Previously, the code generation DUT had to be a Subsystem block.

Code generation for HDL optimized FFT/IFFT System object and HDL
optimized Complex to Magnitude-Angle System object and block

You can generate code for the dsp.HDLFFT and dsp.HDLIFFT System objects, Complex
to Magnitude-Angle HDL Optimized block, and dsp.ComplexToMagnitudeAngle
System object, which are available in the DSP System Toolbox™.

R2014b

1-4

Added features to HDL optimized FFT/IFFT blocks, including reduced
latency

For details of the updates to the FFT HDL Optimized and IFFT HDL Optimized blocks,
see the DSP System Toolbox release notes.

Compatibility Considerations

The FFT HDL Optimized and IFFT HDL Optimized blocks take fewer cycles to compute
one frame of output than in previous releases. For instance, for the default 1024-point
FFT, the latency in R2014a was 1589 cycles whereas in R2014b the latency is 1148. The
latency is displayed on the block icon.

If you have manually matched latency paths in models using the R2014a version of the
FFT HDL Optimized and IFFT HDL Optimized block, adjust the delay on those paths to
accommodate the lower FFT latency.

Tunable parameter support for Gain and Constant blocks

The coder generates a top-level DUT port for each tunable parameter in your DUT that
you use as the Gain parameter in a Gain block, or the Constant value parameter in a
Constant block.

For details, see “Generate Code For Tunable Parameters”.

Code generation for Stateflow active state output

If you enable active state output to show child activity or leaf state activity for a
Stateflow® block, the coder generates code for the active state output. See “Active State
Output”.

Coding standards customization

If you enable HDL coding standard rule checking, you can enable or disable specific
rules. You can specify rule parameters. For example, you can specify the maximum
nesting depth for if-else statements. See HDL Coding Standard Customization.

1-5

HDL Designer script generation

You can now generate a lint tool script for Mentor Graphics® HDL Designer.

To learn about HDL lint script generation for your Simulink design, see “Generate an
HDL Lint Tool Script”.

To learn about HDL lint script generation for your MATLAB design, see “Generate an
HDL Lint Tool Script”.

Clock enable minimization for code generated from MATLAB designs

You can minimize clock enable logic in your generated code by setting the
MinimizeClockEnables property of the coder.HdlConfig object to true, or by
enabling the Minimize clock enables option in the HDL Workflow Advisor.

For details, see “Minimize Clock Enables”.

HDL Block Properties dialog box shows only valid architectures

For each block supported for code generation, the HDL Block Properties dialog box
Architecture drop-down list shows only the architectures that are valid for the block
based on mask parameter settings. Previously, all architectures were available for
selection regardless of mask parameter settings, and invalid settings caused errors
during code generation.

HDL Reciprocal block with Newton-Raphson Implementation

The HDL Reciprocal block is available with Simulink. Use this block to implement
division operations in models intended for HDL code generation. HDL Reciprocal
has two Newton-Raphson HDL implementations, ReciprocalNewton and
ReciprocalNewtonSingleRate. The new implementations use fewer hardware
resources and can achieve higher clock frequency than Divide or Math Function HDL
block implementations.

For the Divide and Math Function blocks, the names of the Newton-Raphson HDL block
implementations have changed:

• RecipNewton is now ReciprocalRsqrtBasedNewton.
• RecipNewtonSingleRate is now ReciprocalRsqrtBasedNewtonSingleRate.

R2014b

1-6

If you open a model from a previous release, HDL Coder automatically maps
the RecipNewton and RecipNewtonSingleRate implementation names to
ReciprocalRsqrtBasedNewton and ReciprocalRsqrtBasedNewtonSingleRate,
respectively.

To learn about the HDL Reciprocal block, see HDL Reciprocal.

To learn about the ReciprocalNewton and ReciprocalNewtonSingleRate
implementations, see HDL Reciprocal.

Serializer1D and Deserializer1D blocks

The following new blocks are available from the HDL Operations library for simulation
and code generation:

• Serializer1D
• Deserializer1D

Additional blocks supported for code generation

The following blocks are now supported for code generation:

• Backlash
• Bus assignment
• Coulomb and Viscous Friction
• DC Blocker
• Dead Zone/Dead Zone Dynamic
• Discrete PID Controller
• Hit Crossing
• HDL Reciprocal
• Serializer1D/Deserializer1D
• Wrap to Zero

Traceable names for RAM blocks and port signals

When you generate code for a RAM block from the HDL Operations library, the name in
the generated code reflects the name in the model. Similarly, port signal names in the
generated code are inherited from your model.

1-7

For each RAM block of a particular size, the coder generates an HDL module. The
module file name reflects the name and size of the RAM block or persistent variable in
your design.

For example, suppose DPRAM_foo is the name of a Dual Port RAM block in your model.
The generated code for the instance is:

u_DPRAM_foo : DualPortRAM_Wrapper_256x8b

The RAM module name and wrapper name also match the name of the Simulink block:

DualPortRAM_256x8b.vhd

DualPortRAM_Wrapper_256x8b.vhd

for-generate statements in generated VHDL code

When you generate VHDL® code for block architectures that use replicated structures,
the coder generates for-generate statements for better readability. For example,
VHDL code generated for the Add and Product blocks uses for-generate statements.

Composite user-defined System object support

You can generate code for user-defined System objects that contain child user-defined
System objects.

System object output and update method support

You can generate code for the output and update methods in user-defined System objects
that inherit from the matlab.system.mixin.Nondirect class.

RAM mapping for user-defined System object private properties

Private properties in user-defined System objects can map to RAM. For details, see
“Implement RAM Using a Persistent Array or System object Properties”.

hdlram renamed to hdl.RAM

The hdlram System object has been renamed to hdl.RAM and is now available with
MATLAB. Previously, hdlram required a Fixed-Point Designer™ license.

R2014b

1-8

Compatibility Considerations

If you open a design that uses hdlram, the software displays a warning. For continued
compatibility with future releases, replace instances of hdlram with hdl.RAM.

Target platform interface mapping information saved with model

For the IP core generation workflow, FPGA turnkey workflow, or Simulink Real-Time™
FPGA I/O workflow, when you map each of your DUT top-level ports to a platform
interface, HDL Coder saves the interface mapping information as port properties in your
model. The coder also saves workflow and target platform information with the model.

For DUT Inport and Outport blocks, you can set and view IOInterface and
IOInterfaceMapping with the HDL Block Properties dialog box or hdlset_param and
hdlget_param.

For an example that shows how to configure target platform interface settings, see “Save
Target Hardware Settings in Model”.

Highlighting for feedback loops that inhibit optimizations

You can generate a MATLAB script that highlights feedback loops that may inhibit delay
balancing or speed and area optimizations. The script highlights feedback loops in your
original model and generated model.

You can also save the highlighting information in a MATLAB script.

For details, see “Find Feedback Loops”.

Optimizations available for conditional-execution subsystems

The following optimizations are now supported for enabled subsystems and triggered
subsystems:

• Resource sharing
• Streaming
• Constrained overclocking
• Floating-point library mapping
• Hierarchy flattening

1-9

• Delay balancing
• Automatic iterative optimization

Variable pipelining in conditional MATLAB code

HDL code generation now supports variable pipelining inside conditional MATLAB code
for the MATLAB to HDL workflow and the MATLAB Function block in the Simulink to
HDL workflow.

2-D matrix types in HDL generated for MATLAB matrices

When you have matrices in your MATLAB code, you can generate 2-D matrices in HDL
code. By default, the software generates HDL vectors with additional index computation
logic, which can use more area in the synthesized hardware than HDL matrices.

To generate 2-D matrix types in HDL in the MATLAB to HDL workflow:

• In the HDL Workflow Advisor, in the HDL Code Generation > Coding Style tab,
select Use matrix types in HDL code.

• At the command line, set the UseMatrixTypesInHDL property of the
coder.HdlConfig object to true.

Previously, 2-D matrix types could be generated in HDL for the Simulink MATLAB
Function block, but not in the MATLAB to HDL workflow.

Optimizations available with UseMatrixTypesInHDL for MATLAB
Function block

When you enable 2-D matrix types in the generated HDL code, for the MATLAB to HDL
workflow and Simulink to HDL workflow, speed and area optimizations are available.
Previously, for the MATLAB Function block, the UseMatrixTypesInHDL parameter was
incompatible with speed and area optimizations.

Validation model generation regardless of delay balancing results

When you enable the Generate validation model option, HDL Coder generates the
validation model even if delay balancing is unsuccessful. In previous releases, if delay
balancing was unsuccessful, the coder did not generate the validation model.

R2014b

1-10

Documentation installation with hardware support package

Starting in R2014b, each hardware support package that you install comes with its own
documentation. For a list of support packages available for HDL Coder, with links to
documentation, see “HDL Coder Supported Hardware”.

Functionality Being Removed or Changed

Functionality What Happens
When You Use This
Functionality

Use This Functionality
Instead

Compatibility
Considerations

HDL Streaming FFT Still runs. The
block is forwarded
from hdldemolib to
dsp.obselete.

FFT HDL Optimized
block, which is
available in the DSP
System Toolbox.

This block will be
removed in a future
release.

HDL FFT Still runs. This block
is renamed “HDL
Minimum Resource
FFT”. It is forwarded
from hdldemolib
dsp.obselete.

FFT HDL Optimized
block, which is
available in the DSP
System Toolbox.

This block will be
removed in a future
release.

R2014a
Version: 3.4

New Features

Bug Fixes

Compatibility Considerations

R2014a

2-2

Code generation for enumeration data types

You can generate code for Simulink, MATLAB, or Stateflow enumerations within your
design. In the current release, you cannot generate code if your design uses enumerations
at the top-level DUT ports.

To learn more about code generation support for enumerations in Simulink designs, see
Enumerations.

To learn more about code generation support for enumerations in MATLAB designs, see
Data Types and Scope.

ZC706 target for IP core generation and integration into Xilinx EDK
project

You can target the Xilinx Zynq-7000 AP ZC706 Evaluation Board for IP core generation
and Xilinx EDK project integration. After you install the HDL Coder Support Package for
Xilinx Zynq-7000 Platform, ZC706 hardware support is available.

Automatic iterative clock frequency optimization

You can use the hdlcoder.optimizeDesign function to achieve either your target
clock frequency or a maximum clock frequency. Based on your clock frequency goal and
target device, the software iteratively generates and synthesizes code, retrieves back
annotation data, and inserts delays into your Simulink model to break the critical path.

To learn more, see Automatic Iterative Optimization.

Code generation for FFT HDL Optimized and IFFT HDL Optimized blocks

You can generate code for the FFT HDL Optimized and IFFT HDL Optimized blocks,
which are available in the DSP System Toolbox.

HDL block library in Simulink

The HDL Coder library, which contains blocks supported for HDL code generation, is
available in Simulink. When you create a model using the HDL Coder library, the blocks
are preconfigured with settings suitable for code generation.

http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/signal-and-data-type-support.html#buaqcxw-1
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/variables-and-constants.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/automatic-iterative-optimization.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/ffthdloptimized.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iffthdloptimized.html

2-3

The HDL Operations library, previously called hdldemolib, is available in Simulink as
part of the HDL Coder library. Previously, the HDL Operations blocks were available
only with an HDL Coder license.

To view the HDL Operations block library from the Simulink Library Browser, open the
HDL Coder folder and select HDL Operations.

Bus support improvements

You can generate code for designs that contain:

• DUT ports connected to buses.
• Buses that are not defined with a bus object.
• Nonvirtual buses.

To learn more, see Buses.

http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/signal-and-data-type-support.html#buaqcxf

R2014a

2-4

Variant Subsystem support for configurable models

You can generate code for designs containing Variant Subsystem blocks. Using Variant
Subsystem blocks enables you to explore and generate code for different component
implementations and design configurations.

Trigger signal can clock triggered subsystems

You can generate code that uses the trigger signals in Triggered Subsystem blocks
as clocks. Using triggers as clocks enables you to partition your design into different
clock regions in the generated code, but can cause a timing mismatch during testbench
simulation.

For details, see Use Trigger As Clock in Triggered Subsystems.

2-D matrix types in code generated for MATLAB Function block

You can now generate 2-D matrices in HDL code when you have MATLAB matrices
in a MATLAB Function block. By default, the software generates HDL vectors with
additional index computation logic, which can use more area in the synthesized hardware
than HDL matrices.

For details, see UseMatrixTypesInHDL.

64-bit data support

You can generate code for uint64 and int64 data types in MATLAB code, both in the
MATLAB-to-HDL workflow and for the MATLAB Function block in the Simulink-to-HDL
workflow.

MATLAB Function block ports must use sfix64 or ufix64 types for 64-bit data,
because uint64 and int64 are not yet supported in Simulink.

HDL code generation from MATLAB System block

The MATLAB System block, which you use to include System objects in Simulink models,
now supports HDL code generation.

For details, see MATLAB System.

http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/use-trigger-as-clock-in-triggered-subsystems.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/block-implementation-parameters.html#bua8xle-1
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/matlabsystem.html

2-5

System object methods in conditional code

HDL code generation now supports System object step method calls inside conditional
code regions.

Persistent keyword not needed in HDL code generation

If your MATLAB code includes a System object that does not have states, you do not need
to include the persistent keyword for HDL code generation.

For details, see Limitations of HDL Code Generation for System Objects.

Dual Rate Dual Port RAM block

A new block, Dual Rate Dual Port RAM, is available for simulation and code generation.

The Dual Rate Dual RAM supports two simultaneous read or write accesses at two
Simulink rates. When you generate code, the Dual Rate Dual Port RAM block infers a
dual-clock dual-port RAM in most FPGAs.

To view the block, open the HDL Operations block library.

For more information about the block, see Dual Rate Dual Port RAM. For HDL code
generation details, see Dual Rate Dual Port RAM.

http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/system-objects.html#bteb8dr-1
http://www.mathworks.com/help/releases/R2014a/simulink/slref/dualratedualportram.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/dualratedualportram.html

R2014a

2-6

Negative edge clocking

You can clock your design on the falling edge of the clock.

To generate code that clocks your design on the negative edge of the clock, in the
Configuration Parameters dialog box, for HDL Code Generation > Global Settings >
Clock Edge, select Falling edge.

Alternatively, at the command line, set the ClockEdge property to 'Falling' using
makehdl or hdlset_param.

For details, see ClockEdge.

Bidirectional port specification

You can specify bidirectional ports for Subsystem blocks that have Architecture set
to BlackBox. In the FPGA Turnkey workflow, you can use the bidirectional ports to
connect to external RAM.

In the generated code, the ports have the Verilog® or VHDL inout keyword. However,
Simulink does not support bidirectional ports, so you cannot simulate the bidirectional
behavior in Simulink.

To learn more, see Specify Bidirectional Ports.

Port names in generated code match signal names

You can use the Icon display block parameter on Inport and Outport blocks to make
your code more readable. When you set the Icon display parameter to Signal name,
Port number, or Port number and signal name, the port names in the generated
code match the display names of the connected signals.

Additional blocks and block implementations supported for code
generation

The following blocks and block implementations are now supported for code generation:

• Sine, Cosine
• Enumerated Constant
• Delay with External reset set to Level.

http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/clockedge.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/customizing-the-generated-interface.html#buayidt-1
http://www.mathworks.com/help/releases/R2014a/simulink/slref/cosine.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/enumeratedconstant.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/delay.html

2-7

• Multiport Switch with enumerated type at control input.

You can set Data port order to Specify indices, and enter enumeration values
for the Data port indices. For example, you can connect the Enumerated Constant
block to the Multiport Switch control port and use the enumerated types as data port
indices.

The HDL FIFO block no longer requires a DSP System Toolbox license. The HDL FIFO
block is available in the HDL Operations library.

Errors instead of warnings for blocks not supported for code generation

If your design contains blocks or block architectures that are not supported for HDL
code generation, the software shows an error and does not generate code. Previously, the

http://www.mathworks.com/help/releases/R2014a/simulink/slref/multiportswitch.html

R2014a

2-8

software showed a warning, but still generated code, with black box interfaces for the
unsupported blocks or block architectures.

Compatibility Considerations

If you want to generate code for models containing unsupported blocks or block
architectures, you must Comment out the unsupported blocks in Simulink.

ModelReference default architecture for Model block

The Model block default architecture is ModelReference. Previously, the default
architecture was BlackBox.

Compatibility Considerations

When you open a model created in a previous release, a Model block in that design
changes architecture from BlackBox to ModelReference if all the HDL block
properties are set to default settings.

To keep the BlackBox architecture for Model blocks, use one of the following
workarounds:

• Open the model using the current release, specify the BlackBox architecture for the
affected Model blocks, and save the model.

• Open the model using a previous release, specify a nondefault setting for each Model
block, and save the model.

Reset port optimization

The coder does not generate a top-level reset port when the code generation subsystem
does not contain resettable delays or blocks.

To generate code without a top-level reset port:

• Set the ResetType HDL block parameter to none for all blocks in the DUT with the
ResetType parameter.

• For MATLAB Function blocks in your DUT, do not enable block level HDL
optimizations, which insert resettable registers.

2-9

For details, see ResetType.

Reset for timing controller

You can generate a reset port for the timing controller, which generates the clock, clock
enable, and reset signals in a multirate DUT.

To generate a reset port for the timing controller, set the TimingControllerArch
property to resettable using makehdl or hdlset_param.

To learn more, see Generate Reset for Timing Controller.

Synthesis attributes for multipliers

You can now generate code that includes synthesis attributes to specify multipliers in
your design that you want to map to DSPs or logic in hardware. If you specify resource
sharing, the software does not share multipliers that have different synthesis attribute
settings.

For Xilinx targets, the generated code uses the use_dsp48 attribute. For Altera targets,
the generated code uses the multstyle attribute.

For details, see DSPStyle.

Ascent Lint script generation

You can now generate a lint tool script for Real Intent Ascent Lint.

To learn about HDL lint script generation for your Simulink design, see Generate an
HDL Lint Tool Script.

To learn about HDL lint script generation for your MATLAB design, see Generate an
HDL Lint Tool Script.

RAM mapping scheduler improvements

The RAM mapping scheduling algorithm now minimizes overclocking when your
MATLAB code maps to multiple RAMs. In addition, multiple persistent variables with
cyclic read-write dependencies can now map to RAM.

http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-27
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-reset-for-timing-controller.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/block-implementation-parameters.html#bubc5wb-1
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html

R2014a

2-10

Incremental code generation and synthesis

In the Simulink-to-HDL workflow, and hardware-software codesign workflow, HDL
Coder does not rerun code generation or synthesis tasks unless you have changed your
model or other hardware-related project settings. You can save time when you want to
regenerate HDL code or FPGA programming files without changing your model, code
generation options, or hardware target.

Similarly, in the hardware and software codesign workflow, when you modify the
embedded software part of your design without changing the hardware part, HDL Coder
does not rerun HDL code generation or synthesis tasks.

When the coder skips code generation or synthesis tasks, the HDL Workflow Advisor
shows a message. The message contains a link you can click to force the coder to rerun
the task.

Custom HDL code for IP core generation

You can integrate custom HDL code into your design in the Simulink-to-HDL IP core
generation workflow. You can integrate handwritten or legacy HDL code into an IP core
that you generate from a Simulink model.

To include custom HDL code in your IP core design, use one or more Model or Subsystem
blocks with Architecture set to BlackBox. Use the Additional source files field in the
HDL Workflow Advisor to specify corresponding HDL file names.

For details of the IP core generation workflow, see Generate a Custom IP Core from
Simulink.

Performance-prioritized retiming

When you enable distributed pipelining, you can specify a priority for Distributed
pipelining priority: Numerical integrity, or Performance. In the previous release,
the distributed pipelining algorithm prioritized numerical integrity.

For details, see DistributedPipeliningPriority.

http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-a-custom-ip-core.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-a-custom-ip-core.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/distributedpipeliningpriority.html

2-11

Retiming without moving user-created design delays

You can use the Preserve design delays option to prevent distributed pipelining from
moving design delays in your Simulink or MATLAB design. If you specify Preserve
design delays, distributed pipelining does not move the following design delays:

• Persistent variable in MATLAB code, a MATLAB Function block, or a Stateflow
Chart

• Unit Delay block
• Integer Delay block
• Memory block
• Delay block from DSP System Toolbox
• dsp.Delay System object from DSP System Toolbox

For details, see PreserveDesignDelays.

Resource sharing factor can be greater than number of shareable
resources

With the resource sharing area optimization, the software shares the maximum number
of shareable resources within your overclocking constraints, even if the sharing factor
that you specify is not an integer divisor of the number of shareable resources. This
capability can increase resource sharing, and therefore reduce area.

For example, if your subsystem has 11 multipliers, and you set SharingFactor to 4, the
coder can implement your design with 3 multipliers: 2 multipliers shared 4 ways, and 1
multiplier shared 3 ways. In the previous release, the coder implemented the design with
5 multipliers: 2 multipliers shared 4 ways, and 3 unshared multipliers. The resulting
implementation requires overclocking by a factor of 4.

To learn more, see Resource Sharing For Area Optimization.

Reduced area with multirate delay balancing

When the coder balances delays in a multirate model, it now inserts a single delay at the
transition from a much faster rate to a slow rate, and passes through the data samples
aligned with the slow rate. Previously, the coder inserted a large number of delays at the
faster rate.

http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/preservedesigndelays.html
examples/resource-sharing-for-area-optimization.html

R2014a

2-12

Serializer-deserializer and multiplexer-demultiplexer optimization

The coder removes back-to-back serializer-deserializer and multiplexer-demultiplexer
pairs introduced by the implementation of optimizations such as resource sharing and
streaming. This results in more area-efficient HDL code.

Synthesis and simulation tool addition and detection after opening HDL
Workflow Advisor

In the Simulink-to-HDL workflow, you can set up and add a synthesis tool without
having to close and reopen the HDL Workflow Advisor. In the HDL Workflow Advisor, in
the Set Target > Set Target Device and Synthesis Tool task, click Refresh to detect
and add the new tool.

You can also set up and add a simulation tool after creating a MATLAB-to-HDL project
without having to close and reopen the project. In the HDL Workflow Advisor, in the
HDL Verification > Verify with HDL Test Bench task, click Refresh list to detect
and add the new tool.

Automatic C compiler setup

In earlier releases, to set up a compiler to accelerate test bench simulation for MATLAB
algorithms, you were required to run mex -setup. Now, the code generation software
automatically locates and uses a supported installed compiler. You can use mex -setup
to change the default compiler. See Changing Default Compiler.

xPC Target is Simulink Real-Time

The xPC Target FPGA I/O workflow is now called the Simulink Real-Time FPGA
I/O workflow. This change reflects the xPC Target™ product name change to Simulink
Real-Time. For details about the product name change, see New product that combines
the functionality of xPC Target and xPC Target Embedded Option.

Updates to supported software

HDL Coder has been tested with:

• Xilinx ISE 14.6

http://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html
http://www.mathworks.com/help/releases/R2014a/xpc/release-notes.html#bt6ao_2-1
http://www.mathworks.com/help/releases/R2014a/xpc/release-notes.html#bt6ao_2-1

2-13

• Altera Quartus II 13.0 SP1

For a list of supported third-party tools and hardware, see Supported Third-Party Tools
and Hardware.

Functionality Being Removed or Changed

You cannot save a model that uses an attached control file to apply HDL model or block
parameters.

Since the R2010a release, if you open a model that uses a control file, the software shows
a warning, and updates the model by applying the HDL parameters to your model and
removing the control file. For continued compatibility with future releases, save the
updated model.

Functionality What Happens
When You Use This
Functionality

Use This Instead Compatibility
Considerations

hdlapplycontrolfile Still runs hdlset_param,
hdlget_param

Do not use control
files for model or
block configuration.
Instead, use
hdlset_param and
hdlget_param to
configure your
model.

hdlnewblackbox Still runs hdlset_param,
hdlget_param

Do not use control
files for model or
block configuration.
Instead, use
hdlset_param and
hdlget_param to
configure your
model.

hdlnewcontrol Still runs hdlset_param,
hdlget_param

Do not use control
files for model or
block configuration.
Instead, use
hdlset_param and

http://www.mathworks.com/help/releases/R2014a/hdlcoder/gs/language-and-tool-version-support.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/gs/language-and-tool-version-support.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlapplycontrolfile.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewblackbox.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewcontrol.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html

R2014a

2-14

Functionality What Happens
When You Use This
Functionality

Use This Instead Compatibility
Considerations

hdlget_param to
configure your
model.

hdlnewcontrolfile Still runs hdlset_param,
hdlget_param

Do not use control
files for model or
block configuration.
Instead, use
hdlset_param and
hdlget_param to
configure your
model.

hdlnewforeach Still runs hdlset_param,
hdlget_param

Do not use control
files for model or
block configuration.
Instead, use
hdlset_param and
hdlget_param to
configure your
model.

http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewcontrolfile.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewforeach.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
http://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html

R2013b
Version: 3.3

New Features

Bug Fixes

Compatibility Considerations

R2013b

3-2

Model reference support and incremental code generation

You can generate HDL code from referenced models using the Model block. To use
a referenced model in a subsystem intended for code generation, in the HDL Block
Properties dialog box, set Architecture to ModelReference.

The coder incrementally generates code for referenced models according to the
Configuration Parameters dialog box > Model Referencing pane > Rebuild
options. However, the coder treats If any changes detected and If any changes in
known dependencies detected as the same. For example, if you set Rebuild to either
If any changes detected or If any changes in known dependencies detected,
the coder regenerates code for referenced models only when the referenced models have
changed.

To learn more, see Model Referencing for HDL Code Generation.

Code generation for user-defined System objects

You can now generate HDL code from user-defined System objects written in MATLAB.
System objects enable you to create reusable HDL IP.

The step method specifies the HDL implementation behavior. It is the only System
object method supported for HDL code generation.

User-defined System objects are not supported for automatic fixed-point conversion.

To learn how to define a custom System object, see Generate Code for User-Defined
System Objects.

RAM inference in conditional MATLAB code

The coder now infers RAM from persistent array variables accessed within conditional
statements, such as if-else or switch-case statements, for both MATLAB designs and
MATLAB Function blocks in Simulink.

If you have nested conditional statements, the persistent array variables can map
to RAM if accessed in the topmost conditional statement, but cannot map to RAM if
accessed in a lower level nested conditional statement.

http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/model-referencing-for-hdl-code-generation.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-code-for-user-defined-system-objects.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-code-for-user-defined-system-objects.html

3-3

Code generation for subsystems containing Altera DSP Builder blocks

You can now generate HDL code for subsystems that include blocks from the Altera DSP
Builder Advanced Blockset.

For details, see Create an Altera DSP Builder Subsystem.

To see an example that shows HDL code generation for an Altera DSP Builder
subsystem, see Using Altera DSP Builder Advanced Blockset with HDL Coder.

IP core integration into Xilinx EDK project for ZC702 and ZedBoard

When you generate an IP core from your MATLAB design or Simulink model, HDL Coder
can automatically insert the IP core into a predefined Xilinx ZC702 or ZedBoard™ EDK
project for the Zynq-7000 platform. The coder automatically connects the IP core to the
AXI interface and ARM processor in the EDK project.

For an overview of the hardware and software codesign workflow, see Hardware and
Software Codesign Workflow.

For an example that shows how to deploy your MATLAB design in hardware and
software on the Zynq-7000 platform, see Getting Started with HW/SW Co-design
Workflow for Xilinx Zynq Platform.

For an example that shows how to deploy your Simulink model in hardware and software
on the Zynq-7000 platform, see Getting Started with HW/SW Co-design Workflow for
Xilinx Zynq Platform.

FPGA Turnkey and IP Core generation in MATLAB to HDL workflow

You can now generate a custom IP core with an AXI4-Lite or AXI4-Stream Video
interface from a MATLAB design. You can integrate the generated IP core into a larger
design in your Xilinx EDK project.

You can also automatically program an Altera or Xilinx FPGA development board with
code generated from your MATLAB design, using the HDL Workflow Advisor FPGA
Turnkey workflow. To learn how to use this workflow, see Program Standalone FPGA
with FPGA Turnkey Workflow and mlhdlc_tutorial_turnkey_led_blinking.

Previously, IP core generation and FPGA Turnkey were available only for the Simulink
to HDL workflow.

http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/hardware-and-software-codesign-workflow_bt3qaox-1.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/hardware-and-software-codesign-workflow_bt3qaox-1.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/program-standalone-fpga-with-fpga-turnkey-workflow-1.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/program-standalone-fpga-with-fpga-turnkey-workflow-1.html

R2013b

3-4

Module or entity generation for local functions in MATLAB Function block

You can now generate instantiable Verilog modules or VHDL entities when you generate
code for local functions in a MATLAB Function block, or for functions on your path that
are called from within a MATLAB Function block.

To enable this feature, in the HDL Block Properties dialog box, set
InstantiateFunctions to on. For details, see InstantiateFunctions.

Bus signal inputs and outputs for MATLAB Function block and Stateflow
charts

MATLAB Function blocks and Stateflow charts with bus signal inputs or outputs are
now supported for code generation. The bus must be defined with a bus object.

Coding style for improved ROM mapping

The coder now automatically inserts a no-reset register at the output of a constant
matrix access. Many synthesis tools infer a ROM from this code pattern. For details, see
Map Matrices to ROM.

Reset port optimization

The coder no longer generates a top level reset port when the ResetType HDL block
parameter is set to none for all RAM blocks in the DUT.

In previous releases, the generated code included a reset port even when the RAM reset
logic was suppressed.

Pipeline registers between adder or multiplier and rounding or saturation
logic

The coder now places a pipeline register between an adder or multiplier and associated
rounding or saturation logic when distributing pipelining registers. This register
placement can significantly improve clock frequency.

Coding style improvements according to industry standard guidelines

The coder now follows these industry standard coding style guidelines when generating
HDL code:

http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/block-implementation-parameters.html#bt3rv73
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/map-matrices-to-rom.html

3-5

• Division by a power of 2 becomes a bit shift operation.
• Constants with double data types in the original design are automatically converted

to their canonical fixed-point types as long as there is no loss of precision.
• SystemVerilog keywords are treated as reserved words.
• Intermediate signals and latches are reduced when HDLCodingStandard is set to

Industry.
• Real data types generate warnings, except when you target an FPGA floating-point

library.

Coding standard report target language enhancement and text file
format

HDL Coder now generates the coding standard report according to target language.
Coding standard errors, warnings, and messages that do not pertain to your target
language no longer appear in the report.

The coding standard report is generated in text file format, in addition to HTML format,
to enable easier comparison between multiple runs.

Load constants from MAT-files

HDL Coder now generates code for the coder.load function, which you can use to
load compile-time constants from a MAT-file. You no longer have to manually type in
constants that were stored in a MAT-file.

To learn how to use coder.load for HDL code generation, see Load constants from a
MAT-File.

UI for SpyGlass, Leda, and custom lint tool script generation

You can now use the UI to generate Atrenta SpyGlass, Synopsys® Leda, or custom lint
scripts in the Simulink-to-HDL and MATLAB-to-HDL workflows.

To learn about HDL lint script generation for your Simulink design, see Generate an
HDL Lint Tool Script.

To learn about HDL lint script generation for your MATLAB design, see Generate an
HDL Lint Tool Script.

http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/load-constants-from-a-mat-file.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/load-constants-from-a-mat-file.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html

R2013b

3-6

Synthesis tool addition and detection after MATLAB-to-HDL project
creation

You can now set up and add a synthesis tool after creating a MATLAB-to-HDL project
without having to close and reopen the project. In the HDL Workflow Advisor, in the Set
Code Generation Target task, click Refresh list to detect and add the new tool. For
details, see Add Synthesis Tool for Current MATLAB Session.

Synthesis script generation for Microsemi Libero and other synthesis tools

You can now generate a Microsemi Libero or custom synthesis tool script during
Simulink-to-HDL and MATLAB-to-HDL code generation.

In the MATLAB-to-HDL workflow, you can now generate synthesis tool scripts
customized for Xilinx ISE, Microsemi Libero, Mentor Graphics Precision, Altera Quartus
II, and Synopsys Synplify Pro®. The coder populates the scripts with default options, but
you can further customize the scripts as needed. In previous releases, you had to enter
the synthesis tool commands manually. For details, see Generate Synthesis Scripts.

File I/O to read test bench data in VHDL and Verilog

You can now specify the generated VHDL or Verilog test bench to use file I/O to read
input stimulus and output response data during simulation, instead of including data
constants in the test bench code. Doing so improves scalability for designs requiring long
simulations and large test vectors.

This feature is available for Simulink-to-HDL and MATLAB-to-HDL code generation.

To learn about test bench generation with file I/O in the Simulink-to-HDL workflow, see
Generate Test Bench With File I/O.

To learn about test bench generation with file I/O in the MATLAB-to-HDL workflow, see
Generate Test Bench With File I/O.

Floating-point library mapping for mixed floating-point and fixed-point
designs

When you enable FPGA target-specific floating-point library mapping, you can now
generate code from a design containing both floating-point and fixed-point components.

http://www.mathworks.com/help/releases/R2013b/hdlcoder/gs/toolbox-setup.html#btp_neo
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-synthesis-scripts.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/test-bench-generation-with-file-io.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-test-bench-with-file-io.html

3-7

The coder determines whether to map to a floating-point IP block based on the data types
in your model.

xPC Target FPGA I/O workflow separate from FPGA Turnkey workflow

The HDL Workflow Advisor target workflow that programs Speedgoat boards to run
with xPC Target is now called the xPC Target FPGA I/O workflow. This workflow is
separate from the FPGA Turnkey workflow for Altera and Xilinx FPGA boards.

For an example that shows how to use the xPC Target FPGA I/O workflow, see Generate
Simulink Real-Time Interface for Speedgoat Boards.

AXM-A75 AD/DA module for Speedgoat IO331 FPGA board

The AXM-A75 AD/DA module for Speedgoat IO331 FPGA board is now available as a
hardware target for the xPC Target FPGA I/O workflow.

Speedgoat IO321 and IO321-5 target hardware support

The xPC Target FPGA I/O workflow now supports the Speedgoat IO321 board and its
variant, Speedgoat IO321-5, as separate hardware targets. Previously, the name of the
IO321-5 board was IO325.

To learn more about the IO321 and IO321-5 boards, see Speedgoat IO321.

Distributed pipelining improvements with loop unrolling in MATLAB
Function block

When you enable distributed pipelining for a MATLAB Function block without persistent
variables, set the Loop Optimization option to Unrolling for better timing results.

HDL Counter has specifiable start value

You can now specify a start value for the HDL Counter block. When the counter
initializes or wraps around, it counts from the specified start value.

http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/workflow-for-speedgoat-fpga-io-boards-and-xpc-target.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/workflow-for-speedgoat-fpga-io-boards-and-xpc-target.html
http://www.mathworks.com/help/releases/R2013b/xpc/io_ref/speedgoatio321.html

R2013b

3-8

Maximum 32-bit address for RAM

For the Single Port RAM block, Simple Dual Port RAM block, Dual Port RAM block,
and hdlram System object, the maximum address width is now 32 bits. For more
information, see:

• hdlram
• RAM Blocks

Removing HDL Support for NCO Block

HDL support for the NCO block will be removed in a future release. Use the NCO HDL
Optimized block instead.

Compatibility Considerations

In the current release, if you generate HDL code for the NCO block, a warning message
appears. In a future release, any attempt to generate HDL code for the NCO block will
cause an error.

Fixed-point file name change

The suffix for generated fixed-point files is now _fixpt. Previously, the suffix was
_FixPt.

Compatibility Considerations

If you have MATLAB-to-HDL projects from previous releases that depend on the
generated fixed-point file name, you can use the FixPtFileNameSuffix property to set
the suffix to _FixPt.

Support package for Xilinx Zynq-7000 platform

Generate a custom IP core for the ZC702 or ZedBoard on the Xilinx Zynq-7000 platform
using the IP core generation workflow.

To install this support package for MATLAB-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Select Code Generation Target task, set
Workflow to IP Core Generation.

http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/hdlramclass.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/ram-blocks.html
http://www.mathworks.com/help/releases/R2013b/dsp/ref/nco.html

3-9

2 For Platform, select Get more.
3 Use Support Package Installer to install the HDL Coder Support Package for Xilinx

Zynq-7000 Platform.

To install this support package for Simulink-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Device and
Synthesis Tool task, set Target workflow to IP Core Generation.

2 For Target platform, select Get more.
3 Use Support Package Installer to install the HDL Coder Support Package for Xilinx

Zynq-7000 Platform.

Support package for Altera FPGA boards

Program Altera FPGA boards with your generated HDL code using the FPGA Turnkey
workflow.

To install this support package for MATLAB-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Select Code Generation Target task, set
Workflow to FPGA Turnkey.

2 For Platform, select Get more boards.
3 Use Support Package Installer to install the HDL Coder Support Package for Altera

FPGA Boards.

To install this support package for Simulink-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Device and
Synthesis Tool task, set Target workflow to FPGA Turnkey.

2 For Target platform, select Get more boards.
3 Use Support Package Installer to install the HDL Coder Support Package for Altera

FPGA Boards.

Compatibility Considerations

Previous versions of HDL Coder had built-in support for Altera FPGA boards in the
FPGA Turnkey workflow. The current version of HDL Coder does not have built-in
support for Altera FPGA boards. To get support for Altera FPGA boards, install the HDL
Coder Support Package for Altera FPGA Boards.

R2013b

3-10

Support package for Xilinx FPGA boards

Program Xilinx FPGA boards with your generated HDL code using the FPGA Turnkey
workflow.

To install this support package for MATLAB-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Select Code Generation Target task, set
Workflow to FPGA Turnkey.

2 For Platform, select Get more boards.
3 Use Support Package Installer to install the HDL Coder Support Package for Xilinx

FPGA Boards.

To install this support package for Simulink-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Device and
Synthesis Tool task, set Target workflow to FPGA Turnkey.

2 For Target platform, select Get more boards.
3 Use Support Package Installer to install the HDL Coder Support Package for Xilinx

FPGA Boards.

Compatibility Considerations

Previous versions of HDL Coder had built-in support for Xilinx FPGA boards in the
FPGA Turnkey workflow. The current version of HDL Coder does not have built-in
support for Xilinx FPGA boards. To get support for Xilinx FPGA boards, install the HDL
Coder Support Package for Xilinx FPGA Boards.

Floating point for FIL and HDL cosimulation test bench generation

With the R2013b release, HDL Coder HDL workflow advisor for Simulink supports
double and single data types on the DUT interface for test bench generation using HDL
Verifier™.

Additional FPGA board support for FIL verification, including Xilinx
KC705 and Altera DSP Development Kit, Stratix V edition

Several FPGA boards have been added to the HDL Verifier FPGA board support
packages, including Xilinx KC705 and Altera DSP Development Kit, Stratix V edition.

3-11

You can select these boards for FIL verification using the HDL workflow advisor for
Simulink.

3-12

R2013a
Version: 3.2

New Features

Bug Fixes

Compatibility Considerations

R2013a

4-2

Static range analysis for floating-point to fixed-point conversion

The coder can now use static range analysis to derive fixed-point data types for your
floating-point MATLAB code.

The redesigned interface for floating-point to fixed-point conversion enables you to use
simulation with multiple test benches, static range analysis, or both, to determine fixed-
point data types for your MATLAB variables.

For details, see Automated Fixed-Point Conversion.

User-specified pipeline insertion for MATLAB variables

You can now specify pipeline register insertion for variables in your MATLAB code. This
feature is available in both the MATLAB to HDL workflow and the MATLAB Function
block.

To learn how to pipeline variables in the MATLAB to HDL workflow, see Pipeline
MATLAB Variables.

To learn how to pipeline variables in the MATLAB Function block, see Pipeline Variables
in the MATLAB Function Block.

Resource sharing and streaming without over clocking

You can now constrain the resource sharing and streaming optimizations to prevent or
reduce overclocking. The coder optimizes your design based on two parameters that you
specify: maximum oversampling ratio, MaxOversampling, and maximum computation
latency, MaxComputationLatency.

For single-rate resource sharing or streaming, you can set MaxOversampling to 1.

To learn more about constrained overclocking, maximum oversampling ratio, and
maximum computation latency, see:

• Optimization With Constrained Overclocking
• Maximum Oversampling Ratio
• Maximum Computation Latency

http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/fixed-point-conversion.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/insert-pipeline-registers-for-matlab-variables.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/insert-pipeline-registers-for-matlab-variables.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/pipeline-variables-in-a-matlab-function-block.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/pipeline-variables-in-a-matlab-function-block.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/optimization-without-overclocking.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/maximum-oversampling-ratio.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/maximum-computation-latency.html

4-3

Generation of custom IP core with AXI4 interface

You can now generate custom IP cores with an AXI4-Lite or AXI4-Stream Video
interface. You can integrate these custom IP cores with your design in a Xilinx EDK
environment for the Xilinx Zynq-7000 Platform.

For more details, see Custom IP Core Generation.

To view an example that shows how to generate a custom IP core, at the command line,
enter:

hdlcoder_ip_core_led_blinking

Coprocessor synchronization in FPGA Turnkey and IP Core Generation
workflows

The coder can now automatically synchronize communication and data transfers between
your processor and FPGA. You can use the new Processor/FPGA synchronization
mode in the FPGA Turnkey workflow with xPC Target, or when you generate a custom
IP core.

For more details, see Processor and FPGA Synchronization.

Code generation for System objects in a MATLAB Function block

You can now generate code from a MATLAB Function block containing System objects.

For details, see System Objects under MATLAB Language Support, in MATLAB
Function Block Usage.

Resource sharing for the MATLAB Function block

You can now specify a resource sharing factor for the MATLAB Function block to share
multipliers in the MATLAB code.

For details, see Resource Sharing and Specify Resource Sharing.

Finer control for delay balancing

You can now disable delay balancing for a subsystem within your DUT subsystem.

http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/custom-ip-core-generation.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/processor-and-fpga-synchronization.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/matlab-function-block.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/matlab-function-block.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/resource-sharing.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/specify-resource-sharing.html

R2013a

4-4

For details, see Balance Delays.

Complex multiplication optimizations in the Product block

You can now share multipliers used in a single complex multiplication in the Product
block. Distributed pipelining can also move registers between the multiply and add
stages of a complex multiplication.

Speedgoat IO331 Spartan-6 FPGA board for FPGA Turnkey workflow

You can now use the Speedgoat IO331 Spartan-6 FPGA board in the FPGA Turnkey
workflow with xPC Target.

You must have an xPC Target license to use this feature.

Cosimulation and FPGA-in-the-Loop for MATLAB HDL code generation

With the MATLAB HDL Workflow Advisor, the HDL Verification step includes
automation for the following workflows:

• Verify with HDL Test Bench: Create a standalone test bench. You can choose to
simulate a model using ModelSim® or Incisive® with a vector file created by the
Workflow Advisor.

• Verify with Cosimulation: Cosimulate the DUT in ModelSim or Incisive with the test
bench in MATLAB.

• Verify with FPGA-in-the-Loop: Create the FPGA programming file and test bench,
and, optionally, download it to your selected development board.

You must have an HDL Verifier license to use these workflows.

HDL coding standard report and lint tool script generation

You can now generate a report that shows how well your generated HDL code conforms
to an industry coding standard. Errors and warnings in the report link to elements in
your original design so you can fix problems.

You can also generate third-party lint tool scripts to use to check your generated HDL
code. In this release, you can generate Leda, SpyGlass, and generic scripts.

To learn more about the coding standard report, see HDL Coding Standard Report.

http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/balance-delays.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/hdl-coding-standard-report.html

4-5

To learn how to generate a coding standard report and lint tool script in the Simulink to
HDL workflow, see:

• Generate an HDL Coding Standard Report
• Generate an HDL Lint Tool Script

To learn how to generate a coding standard report and lint tool script in the MATLAB to
HDL workflow, see:

• Generate an HDL Coding Standard Report
• Generate an HDL Lint Tool Script

Output folder structure includes model name

When you generate code for a subsystem within a model, the output folder structure now
includes the model name.

For example, if you generate code for a subsystem in a model, Mymodel, the output folder
is hdlsrc/Mymodel.

Compatibility Considerations

If you have scripts that depend on a specific output folder structure, you must update
them with the new structure.

File I/O to read test bench data in Verilog

You can now specify the generated HDL test bench to use file I/O to read input stimulus
and output response data during simulation, instead of including data constants in the
test bench code. Doing so improves scalability for designs needing long simulations.

This feature is available when Verilog is the target language.

For details, see Test Bench Generation with File I/O.

Prefix for module or entity name

You can now specify a prefix for every module or entity name in the generated HDL code.
This feature helps you to avoid name clashes when you want to have multiple instances
of the HDL code generated from the same block. For details, see ModulePrefix.

http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-an-hdl-coding-standard-report.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-a-coding-standard-report.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/test-bench-generation-with-file-io.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/moduleprefix.html

R2013a

4-6

Single rate Newton-Raphson architecture for Sqrt, Reciprocal Sqrt

The Sqrt, Reciprocal Sqrt, reciprocal Divide, and reciprocal Math Function blocks now
have a single-rate pipelined architecture. The new architecture enables you to use the
high-speed Newton-Raphson algorithm without multirate or overclocking.

The following table lists each block with its new block implementation.

Block Implementation Name Details

Sqrt SqrtNewtonSingleRate See Sqrt.
Reciprocal Sqrt RecipSqrtNewtonSingleRateSee Reciprocal Sqrt.
Divide (reciprocal) RecipNewtonSingleRate See Divide (reciprocal).
Math Function (reciprocal) RecipNewtonSingleRate See Math Function

(reciprocal).

Additional System objects supported for code generation

Effective with this release, the following System objects provide HDL code generation:

• comm.HDLCRCGenerator
• comm.HDLCRCDetector
• comm.HDLRSEncoder
• comm.HDLRSDecoder
• dsp.HDLNCO

Additional blocks supported for code generation

The following blocks are now supported for HDL code generation:

• NCO HDL Optimized
• Bias
• Relay
• Dot Product
• Sum with more than two inputs with different signs
• MinMax with multiple input data types

http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btusosf
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btusort
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btuso3m
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btuso08
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btuso08
http://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlcrcgeneratorclass.html
http://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlcrcdetectorclass.html
http://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlrsencoderclass.html
http://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlrsdecoderclass.html
http://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.hdlncoclass.html
http://www.mathworks.com/help/releases/R2013a/dsp/ref/ncohdloptimized.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/bias.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/relay.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/dotproduct.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/sum.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/minmax.html

4-7

Functionality being removed

Property
Name

What
Happens
When You
Use This
Property?

Use This Property Instead Compatibility Considerations

RAMStyle Error RAMArchitecture The new property syntax differs.
Replace existing instances of
RAMStyle with the correct
RAMArchitecture syntax.

GainImpls Error ConstMultiplierOptimization The new property syntax differs.
Replace existing instances of
GainImpls with the correct
ConstMultiplierOptimization
syntax.

http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/ramarchitecture.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/ramarchitecture.html
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-3
http://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-3

4-8

R2012b
Version: 3.1

New Features

R2012b

5-2

Input parameter constants and structures in floating-point to fixed-point
conversion

Floating-point to fixed-point conversion now supports structures and constant value
inputs.

RAM, biquad filter, and demodulator System objects

HDL RAM System object

With release 2012b, you can use the hdlram System object for modeling and generating
fixed-point code for RAMs in FPGAs and ASICs. The hdlram System object provides
simulation capability in MATLAB for Dual Port, Simple Dual Port, and Single Port
RAM. The System object also generates RTL code that can be inferred as a RAM by most
synthesis tools.

To learn how to model and generate RAMs using the hdlram System object, see Model
and Generate RAM with hdlram.

HDL System object support for biquad filters

HDL support has been added for the following System object:

• dsp.BiquadFilter

HDL support with demodulator System objects

HDL support has been added for the following System objects:

• comm.BPSKDemodulator

• comm.QPSKDemodulator

• comm.PSKDemodulator

• comm.RectangularQAMDemodulator

• comm.RectangularQAMModulator

Generation of MATLAB Function block in the MATLAB to HDL workflow

You can now generate a MATLAB Function block during the MATLAB to HDL workflow.
You can use the generated block for further design, simulation, and code generation in
Simulink.

http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/model-and-generate-rams-with-hdlram.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/model-and-generate-rams-with-hdlram.html

5-3

For details, see MATLAB Function Block Generation.

HDL code generation for Reed Solomon encoder and decoder, CRC
detector, and multichannel Discrete FIR filter

HDL code generation

In R2012b, HDL code generation support has been added for the following blocks:

• General CRC Syndrome Detector HDL Optimized

For an example of using the HDL-optimized CRC generator and detector blocks, see
Using HDL Optimized CRC Library Blocks.

• Integer-Input RS Encoder HDL Optimized
• Integer-Output RS Decoder HDL Optimized

Multichannel Discrete FIR filters

The Discrete FIR Filter block accepts vector input and supports multichannel
implementation for better resource utilization.

• With vector input and channel sharing option on, the block supports multichannel
fully parallel FIR, including direct form FIR, sym/antisym FIR, and FIRT. Support
for all implementation parameters, for example: multiplier pipeline, add pipeline
registers.

• With vector input and channel sharing option off, the block instantiates one filter
implementation for each channel. If the input vector size is N, N identical filters are
instantiated.

Applies to the fully parallel architecture option for FIR filters only.

Targeting of custom FPGA boards

The FPGA Board Manager and New FPGA Board Wizard allow you to add custom board
information so that you can use FIL simulation with an FPGA board that is not one of
the pre-registered boards. See FPGA Board Customization.

Optimizations for MATLAB Function blocks and black boxes

The resource sharing optimization now operates on MATLAB Function blocks. For
details, see Specify Resource Sharing.

http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/matlab-function-block-generation.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/what-is-fpga-board-customization.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/specify-resource-sharing.html

R2012b

5-4

The delay balancing and distributed pipelining optimizations now operate on black box
subsystems. To learn how to specify latency and enable distributed pipelining for a black
box subsystem, see Customize the Generated Interface.

Generate Xilinx System Generator Black Box block from MATLAB

You can now generate a Xilinx System Generator Black Box block during the MATLAB-
to-HDL workflow. You can use the generated block for further design, simulation, and
code generation in Simulink.

For details, see Xilinx System Generator Black Box Block Generation.

Save and restore HDL-related model parameters

Two new functions, hdlsaveparams and hdlrestoreparams, enable you to save and
restore nondefault HDL-related model parameters. Using these functions, you can
perform multiple iterations on your design to optimize the generated code.

For details, see hdlsaveparams and hdlrestoreparams.

Command-line interface for MATLAB-to-HDL code generation

You can now convert your MATLAB code from floating-point to fixed-point and generate
HDL code using the command-line interface.

To learn how to use the command line interface, open the tutorial:

showdemo mlhdlc_tutorial_cli

User-specifiable clock enable toggle rate in test bench

You can now specify the clock enable toggle rate in your test bench to match your input
data rate or improve test coverage.

To learn how to specify your test bench clock enable toggle rate, see Test Bench Clock
Enable Toggle Rate Specification.

RAM mapping for dsp.Delay System object

The dsp.Delay System object now maps to RAM if the RAM mapping optimization is
enabled and the delay size meets the RAM mapping threshold.

http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/customizing-the-generated-interface.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/xilinx-system-generator-black-box-block-generation.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/hdlsaveparams.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/hdlrestoreparams.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/test-bench-clock-enable-toggle-rate-specification.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/test-bench-clock-enable-toggle-rate-specification.html

5-5

To learn how to map the dsp.Delay System object to RAM, see Map Persistent Arrays
and dsp.Delay to RAM.

Code generation for Repeat block with multiple clocks

You can now generate code for the DSP System Toolbox Repeat block in a model with
multiple clocks.

Automatic verification with cosimulation using HDL Coder

With the HDL Coder HDL Workflow Advisor, you can automatically verify using your
Simulink test bench with the new verification step Run Cosimulation Test Bench.
During verification, the HDL Workflow Advisor and HDL Verifier verify the generated
HDL using cosimulation between the HDL Simulator and the Simulink test bench. See
Automatic Verification in the HDL Verifier documentation.

ML605 Board Added To Turnkey Workflow

The Xilinx Virtex-6 FPGA ML605 board has been added for Turnkey Workflow in the
HDL Workflow Advisor.

http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/how-to-map-persistent-arrays-to-ram.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/how-to-map-persistent-arrays-to-ram.html

5-6

R2012a
Version: 3.0

New Features

Compatibility Considerations

R2012a

6-2

Product Name Change and Extended Capability

HDL Coder replaces Simulink HDL Coder and adds the HDL code generation capability
directly from MATLAB.

To generate HDL code from MATLAB, you need the following products:

• HDL Coder
• MATLAB Coder™
• Fixed-Point Toolbox™
• MATLAB

To generate HDL code from Simulink, you need the following products:

• HDL Coder
• MATLAB Coder
• Fixed-Point Toolbox
• Simulink Fixed Point™
• Simulink
• MATLAB

Code Generation from MATLAB

You can now generate HDL code directly from MATLAB code.

This workflow provides:

• Verilog or VHDL code generation from MATLAB code.
• Test bench generation from MATLAB scripts.
• Automated conversion from floating point code to fixed point code.
• Automated HDL verification through integration with ModelSim and ISim.
• HDL code generation for a subset of System objects from the Communications System

Toolbox™ and DSP System Toolbox.
• A traceability report mapping generated HDL code to your original MATLAB code.

The MATLAB to HDL workflow provides the following automated HDL code
optimizations:

6-3

• Area optimizations: RAM mapping for persistent array variables, loop streaming,
resource sharing, and constant multiplier optimization.

• Speed optimizations: input pipelining, output pipelining, and distributed pipelining.

The coder can also generate a resource utilization report, with RAM usage and the
number of adders, multipliers, and muxes in your design.

See also HDL Code Generation from MATLAB.

Code Generation from Any Level of Subsystem Hierarchy

You can now generate HDL code from a subsystem at any level of the subsystem
hierarchy. In previous releases, you could generate HDL code from the top-level
subsystem only.

This feature also enables you to check any level subsystem for code generation
compatibility, and to automatically generate a testbench.

Automated Subsystem Hierarchy Flattening

You can now generate code with a flattened subsystem hierarchy, while preserving
hierarchy in nested subsystems.

This option enables you to perform more extensive area and speed optimization on the
flattened component. It also enables you to reduce the number of HDL output files.

See also Hierarchy Flattening.

Support for Discrete Transfer Fcn Block

You can now generate HDL code from the Discrete Transfer Fcn block.

For details, see Discrete Transfer Fcn Requirements and Restrictions.

User Option to Constrain Registers on Output Ports

A new property, ConstrainedOutputPipeline, enables you to specify the number of
registers you wish to have on an output port without introducing additional delay on the
input to output path. The coder redistributes existing delays within your design to try
to meet the constraint. This behavior is different from the OutputPipeline property,
which introduces additional delay on the input to output path.

http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/bta01v0.html
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdbbiu.html
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/bsmj7i0-1.html#btei_bh

R2012a

6-4

If the coder is unable to meet the constraint using existing delays, it reports the
difference between the number of desired and actual output registers in the timing
report.

Distributed Pipelining for Sum of Elements, Product of Elements, and
MinMax Blocks

The Sum of Elements, Product of Elements, and MinMax blocks can now participate in
distributed pipelining if their architecture is set to Tree.

MATLAB Function Block Enhancements

Multiple Accesses to RAMs Mapped from Persistent Variables

You can now perform multiple reads and writes to a persistent variable, and the
persistent variable will still be mapped to RAM. In previous releases, a RAM mapped
from a persistent variable could be accessed only once.

Streaming for MATLAB Loops and Vector Operations

You can now perform streaming on MATLAB loops and loops created from vector
operations for improved area efficiency.

For details, see Loop Optimization.

Loop Unrolling for MATLAB Loops and Vector Operations

You can now unroll user-written MATLAB loops and loops created from vector
operations. This enables the coder to perform area and speed optimizations on the
unrolled loops.

For details, see Loop Optimization.

Automated Code Generation from Xilinx System Generator for DSP
Blocks

You can now automatically generate HDL code from subsystems containing Xilinx
System Generator for DSP blocks.

For details, see Code Generation with Xilinx System Generator Subsystems.

http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdowon-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdowon-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btel3j3.html

6-5

Altera Quartus II 11.0 Support in HDL Workflow Advisor

The HDL Workflow Advisor has now been tested with Altera Quartus II 11.0. In previous
releases, the HDL Workflow Advisor was tested with Altera Quartus II 9.1.

Automated Mapping to Xilinx and Altera Floating Point Libraries

The coder can now map Simulink floating point operations to synthesizable floating point
Altera Megafunctions and Xilinx LogiCORE IP Floating Point Operator v5.0 blocks. To
learn more, see FPGA Target-Specific Floating-Point Library Mapping.

For a list of supported Altera Megafunction blocks, see Supported Altera Floating-Point
Library Blocks.

For a list of supported Xilinx LogicCORE IP blocks, see Supported Xilinx Floating-Point
Library Blocks.

Vector Data Type for PCI Interface Data Transfers Between xPC Target and
FPGA

In the FPGA Turnkey workflow, you can now use vector data types with the Scalarize
Vector Ports option to automatically generate PCI DMA transfers on the PCI interface
between xPC Target and FPGA. You no longer need to manually insert multiplexers,
demultiplexers and provide synchronization logic for vector data transfers.

If the Scalarize Vector Ports option is disabled when the code generation subsystem
has vector ports, the coder displays an error.

New Global Property to Select RAM Architecture

There is a new global property, RAMArchitecture, that enables you to generate RAMs
either with or without clock enables. This property applies to every RAM in your design,
and replaces the block level property, RAMStyle. By default, RAMs are generated with
clock enables.

To generate RAMs without clock enables, set RAMArchitecture to
'WithoutClockEnable'. To generate RAMs with clock enables, either use the
default, or set RAMArchitecture to 'WithClockEnable'. For more information, see
Implement RAMs With or Without Clock Enable.

http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btd0dus-1
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btd0dus-1
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btdzecc-1
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btdzecc-1
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/brrdj5v-1.html#br7j5tp

R2012a

6-6

Compatibility Considerations

The coder now ignores the block level property, RAMStyle.

If a block’s RAMStyle property is set, the coder generates a warning.

Turnkey Workflow for Altera Boards

HDL Workflow Advisor now supports Altera FPGA design software and the following
Altera development kits and boards:

• Altera Arria II GX FPGA development kit
• Altera Cyclone III FPGA development kit
• Altera Cyclone IV GX FPGA development kit
• Altera DE2-115 development and education board

This workflow has been tested with Altera Quartus II 11.0.

HDL Support For Bus Creator and Bus Selector Blocks

Release R2012a provides HDL code generation for the Bus Creator and Bus Selector
blocks. You must use these blocks for your buses if you want HDL support.

HDL Support For HDL CRC Generator Block

Release R2012a provides HDL code generation for the new HDL CRC Generator block.

HDL Support for Programmable Filter Coefficients

When using filter blocks to generate HDL code, you can specify coefficients from input
port(s). This feature applies to FIR and BiQuad filter blocks only. Fully Parallel and all
serial architectures are supported.

Follow these directions to use programmable filters:

1 Select Input port(s) as coefficient source from the filter block mask.
2 Connect the coefficient port with a vector signal.
3 Specify the implementation architecture and parameters from the HDL Coder

property interface.

6-7

4 Generate HDL code.

Notes

• For fully parallel implementations, the coefficients ports are connected to the
dedicated MAC directly.

• For serial implementation, the coefficients ports first go to a mux, and then to the
MAC. The mux decides the coefficients that used at current time instant

• For Discrete FIR filters, this feature is not supported under the following conditions:

• Implementations having coefficients specified by dialog parameters (for example,
complex input and coefficients with serial architecture)

• Filters using DA architecture
• CoeffMultipliers specified as csd or factored-csd

• For Biquad filters, this feature is not supported when CoeffMultipliers are specified as
csd or factored-csd.

Synchronous Multiclock Code Generation for CIC Decimators and
Interpolators

You can specify multiple clocks in one of the following ways:

• Use the model-level parameter ClockInputs with the function makehdl and specify
the value as 'Multiple'.

• In the Clock settings section of the Global Settings pane in the HDL Code
Generation Configuration Parameters dialog box, set Clock inputs to Multiple.

When you use single-clock mode, HDL code generated from multirate models uses a
single master clock that corresponds to the base rate of the DUT. When you use multiple-
clock mode, HDL code generated from multirate models use one clock input for each rate
in the DUT. The number of timing controllers generated in multiple-clock mode depends
on the design in the DUT.

The ClockInputs parameter supports the values 'Single' and 'Multiple', where the
default is 'Single'. In the default single-clock mode, the coder behavior is unchanged from
previous releases.

R2012a

6-8

Filter Block Resource Report Participation

Resource reports include the HDL resource usage for filter blocks. The report includes
adders, subtractors, multipliers, multiplexers, registers. This feature covers all filter
blocks, and all implementations for the block.

You can turn on the report feature using the command line (ResourceReport) or GUI
(Generate resource utilization report). The following illustrations show a report for a
model that includes a Discrete FIR Filter block.

6-9

HDL Block Properties Interface Allows Choice of Filter Architecture

You can choose from several filter architectures for FIR Decimation and Discrete FIR
Filter blocks. Choices are:

• Fully Parallel
• Distributed Architecture (DA)
• Fully Serial
• Party Serial

R2012a

6-10

• Cascade Serial

The availability of architectures depends on the transfer function type and filter
structure of filter blocks. For Partly Serial and DA, specify at least SerialPartition
and DALUTPartition, respectively, so that these architectures are inferred. For
example, if you select Distributed Architecture (DA), make sure to also set
DALUTPartition.

6-11

HDL Support for FIR Filters With Serial Architectures and Complex Inputs

HDL support for serial implementations of a FIR block with complex inputs.

HDL Support for External Reset Added for Proportional-Integral-
Derivative (PID) and Discrete Time Integrator (DTI) Blocks

External reset support added for level mode.

6-12

